Name: Answers
Date: November 11, 2015

Practice Quiz No. 9

Show all of your work, label your answers clearly, and do not use a calculator.

Problem 1 Find the generalized antiderivative of $f(x) = -2x^5 + 3x + 2$

$$\int f(x) dx = \int -2x^{5} + 3x + 2 dx$$
= $\int -2x^{5} dx + \int 3x dx + \int 2 dx$
= $-2\int x^{5} dx + 3\int x dx + 2\int 1 dx$
= $-2\left(\frac{x^{6}}{6}\right) + 3\left(\frac{x^{2}}{2}\right) + 2(x) + C$
= $-\frac{1}{3}x^{6} + \frac{2}{3}x^{2} + 2x + C$

Problem 2 $\int \sin(2s) + sds =$

$$= \int \sin(2s) \, ds + \int s \, ds$$

$$= -\frac{1}{2} \cos(2s) + \frac{s^2}{2} + C$$

Problem 3 Solve the initial value problem:

$$\frac{dy}{dx} = 3x + 2, \quad y(0) = -1$$

$$= 3 \int x dx + 2 dx$$

$$= 3 \int x dx + 2 \int 1 dx$$

$$= 3 \left(\frac{x^2}{2} \right) + 2(x) + C$$

$$y(0) = 3(\frac{0}{2}) + 2(0) + C = C \implies C = -1$$

$$y(x) = \frac{3}{2}x^{2} + 2x - 1$$
Problem 4 Find the generalized antiderivative of

$$g(x) = \frac{1}{1 + (3x)^2}$$

$$\int g(x)dx = \int \frac{1}{1+(3x)^2}dx = \frac{1}{3}\arctan(3x) + C$$

Problem 5
$$\int 2^x dx = \frac{2^x}{\ln(2)} + C$$

Problem 6 Using an upper sum approximation with two rectangles of equal width, approximate the area of the region that lies below the graph of $f(x) = x^3$, above the x-axis, and to the left of x = 2.

Problem 7 Using a lower sum approximation with four rectangles of equal width, approximate the area of the region that lies below the graph of f(x) = 2x, above the x-axis, and to the left of x = 2.

Problem 8 Using a sum approximation with the midpoint method with three rectangles of equal width, approximate the area of the region that lies below the graph of $f(x) = 1 - x^2$, above the x-axis, and to the right of x = 0.

Area of rectangles =
$$(1 - (\frac{1}{6})^2)(\frac{1}{3}) + (1 - (\frac{3}{6})^2)(\frac{1}{3}) + (1 - (\frac{5}{6})^2)(\frac{1}{3})$$

$$= \frac{3}{3} \left(\frac{36}{36} - \frac{1}{36} \right) + \left(\frac{36}{36} - \frac{9}{36} \right) + \left(\frac{36}{36} - \frac{25}{36} \right)$$

$$= \left(\frac{1}{3} \right) \left(\frac{35 + 27 + 11}{36} \right)$$

$$= \frac{72}{3(36)} = \frac{2(36)}{3(36)} = \frac{2}{3}$$